1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)
# 11.1. Scatter plots
# code listing 11.1. A scatter plot with best fit lines
attach(mtcars)
plot(wt, mpg,
main = "Basic Scatter plot of MPG vs. Weight",
xlab="Car Weight (lbs/1000)",
ylab="Miles Per Gallon ", pch=19)
abline(lm(mpg ~ wt), col="red", lwd=2, lty=1)
lines(lowess(wt, mpg), col="blue", lwd=2, lty=2) #figure 11.1
# figure 11.2
library(car)
scatterplot(mpg ~ wt | cyl, data=mtcars, lwd=2, span=0.75,
main="Scatter Plot of MPG vs. Weight by # Cylinders",
xlab="Weight of Car (lbs/1000)",
ylab="Miles Per Gallon",
legend.plot=TRUE,
id=list(method="identify"),
#labels=row.names(mtcars),
boxplots="xy"
)
# 11.1.1. Scatter plot matrices
# figure 11.3
pairs(~mpg+disp+drat+wt, data = mtcars,
main="Basic Scatter Plot Matrix")
# figure 11.3-1
pairs(~mpg+disp+drat+wt, data = mtcars,
lower.panel = NULL,
main="Basic Scatter Plot Matrix")
# figure 11.3-2
pairs(~mpg+disp+drat+wt, data = mtcars,
upper.panel = NULL,
main="Basic Scatter Plot Matrix")
# figure 11.4
library(car)
scatterplotMatrix(~ mpg + disp + drat + wt, data = mtcars, spead=F,
smoother.args=list(lty=2),
main="Scatter Plot Matrix via car Package")
cor(mtcars[c("mpg", "wt", "disp", "drat")])
# mpg wt disp drat
# mpg 1.0000000 -0.8676594 -0.8475514 0.6811719
# wt -0.8676594 1.0000000 0.8879799 -0.7124406
# disp -0.8475514 0.8879799 1.0000000 -0.7102139
# drat 0.6811719 -0.7124406 -0.7102139 1.0000000
# There were 50 or more warnings (use warnings() to see the first 50)
# code listing 11.2. Scatter plot matrix produced with the gclus package
# install.packages("gclus")
library(gclus)
colnames(mtcars)
# [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"
str(mtcars)
mydata <- mtcars[c(1, 3, 5, 6)]
mydata.corr <- abs(cor(mydata))
mycolors <- dmat.color(mydata.corr)
myorder <- order.single(mydata.corr)
# figure 11.4-2
cpairs(mydata,
myorder,
panel.colors=mycolors,
gap=.5,
main="Variables Ordered and Colored by Correlation"
)
# 11.1.2. High-density scatter plots
set.seed(1234)
n <- 10000
c1 <- matrix(rnorm(n, mean=0, sd=.5), ncol=2)
c2 <- matrix(rnorm(n, mean=3, sd=2), ncol=2)
mydata <- rbind(c1, c2)
mydata <- as.data.frame(mydata)
names(mydata) <- c("x", "y")
# figure 11.5
with(mydata,
plot(x, y, pch=19, main="Scatter Plot with 10,000 Observations"))
# figure 11.6
with(mydata,
smoothScatter(x, y, main="Scatterplot Colored by Smoothed Densities"))
# figure 11.7
# install.packages("hexbin")
library(hexbin)
with(mydata, {
bin <- hexbin(x, y, xbins=50)
plot(bin, main="Hexagonal Binning with 10,000 Observations")
})
# figure 11.7-1
# install.packages("IDPmisc")
library(IDPmisc)
with(mydata,
iplot(x, y, main="Image Scatter Plot with Color Indicating Density"))
# 11.1.3. 3D scatter plots
# figure 11.8
# install.packages("scatterplot3d")
library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt, disp, mpg,
main="Basic 3D Scatter Plot")
# figure 11.9
library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt, disp, mpg,
pch=16,
highlight.3d = T,
type = "h",
main="3D Scatter Plot with Vertical Lines")
# figure 11.10
library(scatterplot3d)
attach(mtcars)
s3d <- scatterplot3d(wt, disp, mpg,
pch=16,
highlight.3d = T,
type = "h",
main="3D Scatter Plot with Vertical Lines")
fit <- lm(mpg ~ wt+disp)
s3d$plane3d(fit)
# figure 11.11 and 11.11-1
# continue figure 11.10
# install.packages("rgl")
library(rgl)
attach(mtcars)
plot3d(wt, disp, mpg, col = "red", size=5)
# figure 11.12 and figure 11.12-1
# install.packages("Rcmdr")
library(Rcmdr)
attach(mtcars)
scatter3d(wt, disp, mpg)
# 11.1.5. Bubble plots
attach(mtcars)
r <- sqrt(disp/pi)
symbols(wt, mpg, circles = r, inches = 0.30,
fg="white", bg="lightblue",
main="Bubble Plot with point size proportional to displacement",
ylab = "Miles Per Gallon",
xlab = "Weight of Car (lbs/1000)")
text(wt, mpg, rownames(mtcars), cex=0.6)
detach(mtcars)
# 11.2. Line charts
# code listing 11.3. Creating side-by-side scatter and line plots
opar <- par(no.readonly = T)
par(mfrow=c(1,2))
table(Orange$Tree)
t1 <- subset(Orange, Tree==1)
plot(t1$age, t1$circumference,
xlab = "Age (days)",
ylab = "Circumference (mm)",
main = "Orange Tree 1 Growth")
plot(t1$age, t1$circumference,
xlab = "Age (days)",
ylab = "Circumference (mm)",
main = "Orange Tree 1 Growth",
type = "b")
par(opar)
# figure 11.15
opar <- par(no.readonly = T)
par(mfrow=c(2,4))
linetpye <- c("p", "l", "o", "b", "c", "s", "S", "h")
t1 <- subset(Orange, Tree==1)
for (i in linetpye){
mainstr <- paste("type = ", '"', i, '"')
plot(t1$age, t1$circumference,
xlab = "Age (days)",
ylab = "Circumference (mm)",
type = "n",
main = mainstr)
lines(t1$age, t1$circumference, type = i)
}
par(opar)
# code listing 11.4. Line chart displaying the growth of five orange trees over time
# figure 11.16
class(Orange$Tree)
Orange$Tree <- as.numeric(Orange$Tree)
class(Orange$Tree)
ntrees <- max(Orange$Tree)
xrange <- range(Orange$age)
yrange <- range(Orange$circumference)
plot(xrange, yrange,
type = "n",
xlab = "Age (days)",
ylab = "Circumference (mm)"
)
colors <- rainbow(ntrees)
linetype <- c(1:ntrees)
plotchar <- seq(18, 18+ntrees, 1)
for (i in 1:ntrees){
tree <- subset(Orange, Tree==i)
lines(tree$age, tree$circumference,
type="b",
lwd=2,
lty=linetype[i],
col=colors[i],
pch=plotchar[i]
)
}
title("Tree Growth", "example of line plot")
legend(xrange[1], yrange[2],
1:ntrees,
cex = 0.8,
col = colors,
pch = plotchar,
lty=linetype,
title = "Tree"
)
# 11.3. Correlograms
options(digits = 2)
cor(mtcars)
# mpg cyl disp hp drat wt qsec vs am gear carb
# mpg 1.00 -0.85 -0.85 -0.78 0.681 -0.87 0.419 0.66 0.600 0.48 -0.551
# cyl -0.85 1.00 0.90 0.83 -0.700 0.78 -0.591 -0.81 -0.523 -0.49 0.527
# disp -0.85 0.90 1.00 0.79 -0.710 0.89 -0.434 -0.71 -0.591 -0.56 0.395
# hp -0.78 0.83 0.79 1.00 -0.449 0.66 -0.708 -0.72 -0.243 -0.13 0.750
# drat 0.68 -0.70 -0.71 -0.45 1.000 -0.71 0.091 0.44 0.713 0.70 -0.091
# wt -0.87 0.78 0.89 0.66 -0.712 1.00 -0.175 -0.55 -0.692 -0.58 0.428
# qsec 0.42 -0.59 -0.43 -0.71 0.091 -0.17 1.000 0.74 -0.230 -0.21 -0.656
# vs 0.66 -0.81 -0.71 -0.72 0.440 -0.55 0.745 1.00 0.168 0.21 -0.570
# am 0.60 -0.52 -0.59 -0.24 0.713 -0.69 -0.230 0.17 1.000 0.79 0.058
# gear 0.48 -0.49 -0.56 -0.13 0.700 -0.58 -0.213 0.21 0.794 1.00 0.274
# carb -0.55 0.53 0.39 0.75 -0.091 0.43 -0.656 -0.57 0.058 0.27 1.000
# install.packages("corrgram")
library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="Correlogram of mtcars intercorrelations") # figure 11.17
# a second example
# figure 11.18
library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse,
upper.panel=panel.pts, text.panel=panel.txt,
diag.panel=panel.minmax,
main="Correlogram of mtcars data using scatter plots and ellipses")
# figure 11.19 with originalß order
library(corrgram)
corrgram(mtcars, lower.panel=panel.shade,
upper.panel=NULL, text.panel=panel.txt,
main="Car Mileage Data (unsorted)")
# figure 11.20
library(corrgram)
col.corrgram <- function(ncol){
colorRampPalette(c("darkgoldenrod4", "burlywood1",
"darkkhaki", "darkgreen"))(ncol)}
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
upper.panel=panel.pie, text.panel=panel.txt,
main="A Corrgram (or Horse) of a Different Color")
# 11.4. Mosaic plots
ftable(Titanic)
# Survived No Yes
# Class Sex Age
# 1st Male Child 0 5
# Adult 118 57
# Female Child 0 1
# Adult 4 140
# 2nd Male Child 0 11
# Adult 154 14
# Female Child 0 13
# Adult 13 80
# 3rd Male Child 35 13
# Adult 387 75
# Female Child 17 14
# Adult 89 76
# Crew Male Child 0 0
# Adult 670 192
# Female Child 0 0
# Adult 3 20
# figure 11.21
library(vcd)
mosaic(Titanic, shade=TRUE, legend=TRUE)
# altinative code
# mosaic(~Class+Sex+Age+Survived, data=Titanic, shade=TRUE, legend=TRUE)
|