1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)
# 13.2. Logistic regression
# install.packages("AER")
data(Affairs, package = "AER")
head(Affairs)
summary(Affairs)
# affairs gender age yearsmarried children religiousness
# Min. : 0.000 female:315 Min. :17.50 Min. : 0.125 no :171 Min. :1.000
# 1st Qu.: 0.000 male :286 1st Qu.:27.00 1st Qu.: 4.000 yes:430 1st Qu.:2.000
# Median : 0.000 Median :32.00 Median : 7.000 Median :3.000
# Mean : 1.456 Mean :32.49 Mean : 8.178 Mean :3.116
# 3rd Qu.: 0.000 3rd Qu.:37.00 3rd Qu.:15.000 3rd Qu.:4.000
# Max. :12.000 Max. :57.00 Max. :15.000 Max. :5.000
# education occupation rating
# Min. : 9.00 Min. :1.000 Min. :1.000
# 1st Qu.:14.00 1st Qu.:3.000 1st Qu.:3.000
# Median :16.00 Median :5.000 Median :4.000
# Mean :16.17 Mean :4.195 Mean :3.932
# 3rd Qu.:18.00 3rd Qu.:6.000 3rd Qu.:5.000
# Max. :20.00 Max. :7.000 Max. :5.000
table(Affairs$affairs)
# 0 1 2 3 7 12
# 451 34 17 19 42 38
Affairs$ynaffair[Affairs$affairs > 0] <- 1
Affairs$ynaffair[Affairs$affairs == 0] <- 0
Affairs$ynaffair <- factor(Affairs$ynaffair,
levels = c(0, 1),
labels = c("No", "Yes"))
table(Affairs$ynaffair)
# No Yes
# 451 150
colnames(Affairs)
# [1] "affairs" "gender" "age" "yearsmarried" "children"
# [6] "religiousness" "education" "occupation" "rating" "ynaffair"
fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children +
religiousness + education + occupation + rating,
data = Affairs, family = binomial())
summary(fit.full)
# Call:
# glm(formula = ynaffair ~ gender + age + yearsmarried + children +
# religiousness + education + occupation + rating, family = binomial(),
# data = Affairs)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -1.5713 -0.7499 -0.5690 -0.2539 2.5191
#
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 1.37726 0.88776 1.551 0.120807
# gendermale 0.28029 0.23909 1.172 0.241083
# age -0.04426 0.01825 -2.425 0.015301 *
# yearsmarried 0.09477 0.03221 2.942 0.003262 **
# childrenyes 0.39767 0.29151 1.364 0.172508
# religiousness -0.32472 0.08975 -3.618 0.000297 ***
# education 0.02105 0.05051 0.417 0.676851
# occupation 0.03092 0.07178 0.431 0.666630
# rating -0.46845 0.09091 -5.153 2.56e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for binomial family taken to be 1)
#
# Null deviance: 675.38 on 600 degrees of freedom
# Residual deviance: 609.51 on 592 degrees of freedom
# AIC: 627.51
#
# Number of Fisher Scoring iterations: 4
fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, data = Affairs, family = binomial())
summary(fit.reduced)
# Call:
# glm(formula = ynaffair ~ age + yearsmarried + religiousness +
# rating, family = binomial(), data = Affairs)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -1.6278 -0.7550 -0.5701 -0.2624 2.3998
#
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 1.93083 0.61032 3.164 0.001558 **
# age -0.03527 0.01736 -2.032 0.042127 *
# yearsmarried 0.10062 0.02921 3.445 0.000571 ***
# religiousness -0.32902 0.08945 -3.678 0.000235 ***
# rating -0.46136 0.08884 -5.193 2.06e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for binomial family taken to be 1)
#
# Null deviance: 675.38 on 600 degrees of freedom
# Residual deviance: 615.36 on 596 degrees of freedom
# AIC: 625.36
#
# Number of Fisher Scoring iterations: 4
anova(fit.reduced, fit.full, test = "Chisq")
# Analysis of Deviance Table
#
# Model 1: ynaffair ~ age + yearsmarried + religiousness + rating
# Model 2: ynaffair ~ gender + age + yearsmarried + children + religiousness +
# education + occupation + rating
# Resid. Df Resid. Dev Df Deviance Pr(>Chi)
# 1 596 615.36
# 2 592 609.51 4 5.8474 0.2108
#=============================================================================
# 13.2.1. Interpreting the model parameters
coef(fit.reduced)
# (Intercept) age yearsmarried religiousness rating
# 1.93083017 -0.03527112 0.10062274 -0.32902386 -0.46136144
coef(fit.full)
# (Intercept) gendermale age yearsmarried childrenyes religiousness
# 1.37725816 0.28028665 -0.04425502 0.09477302 0.39767213 -0.32472063
# education occupation rating
# 0.02105086 0.03091971 -0.46845426
exp(coef(fit.reduced))
# (Intercept) age yearsmarried religiousness rating
# 6.8952321 0.9653437 1.1058594 0.7196258 0.6304248
exp(confint(fit.reduced))
# 13.2.2. Assessing the impact of predictors on the probability of an outcome
testdata <- data.frame(rating=c(1, 2, 3, 4, 5), age=mean(Affairs$age),
yearsmarried=mean(Affairs$yearsmarried),
religiousness=mean(Affairs$religiousness))
testdata
# rating age yearsmarried religiousness
# 1 1 32.48752 8.177696 3.116473
# 2 2 32.48752 8.177696 3.116473
# 3 3 32.48752 8.177696 3.116473
# 4 4 32.48752 8.177696 3.116473
# 5 5 32.48752 8.177696 3.116473
testdata$prob <- predict(fit.reduced, newdata = testdata, type = "response")
testdata
# rating age yearsmarried religiousness prob
# 1 1 32.48752 8.177696 3.116473 0.5302296
# 2 2 32.48752 8.177696 3.116473 0.4157377
# 3 3 32.48752 8.177696 3.116473 0.3096712
# 4 4 32.48752 8.177696 3.116473 0.2204547
# 5 5 32.48752 8.177696 3.116473 0.1513079
testdata <- data.frame(rating=mean(Affairs$rating),
age=seq(17, 57, 10),
yearsmarried=mean(Affairs$yearsmarried),
religiousness=mean(Affairs$religiousness))
testdata
# rating age yearsmarried religiousness
# 1 3.93178 17 8.177696 3.116473
# 2 3.93178 27 8.177696 3.116473
# 3 3.93178 37 8.177696 3.116473
# 4 3.93178 47 8.177696 3.116473
# 5 3.93178 57 8.177696 3.116473
testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
testdata
# rating age yearsmarried religiousness prob
# 1 3.93178 17 8.177696 3.116473 0.3350834
# 2 3.93178 27 8.177696 3.116473 0.2615373
# 3 3.93178 37 8.177696 3.116473 0.1992953
# 4 3.93178 47 8.177696 3.116473 0.1488796
# 5 3.93178 57 8.177696 3.116473 0.1094738
# 13.2.3. Overdispersion
deviance(fit.reduced)/df.residual(fit.reduced)
fit <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, family = binomial(), data = Affairs)
fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness +
rating, family = quasibinomial(), data = Affairs)
pchisq(summary(fit.od)$dispersion * fit$df.residual,
fit$df.residual, lower = F)
# [1] 0.340122
# 13.3. Poisson regression
# install.packages("robust")
data(breslow.dat, package="robust")
colnames(breslow.dat)
# [1] "ID" "Y1" "Y2" "Y3" "Y4" "Base" "Age" "Trt" "Ysum" "sumY" "Age10"
# [12] "Base4"
summary(breslow.dat[c(6:10)])
# Base Age Trt Ysum sumY
# Min. : 6.00 Min. :18.00 placebo :28 Min. : 0.00 Min. : 0.00
# 1st Qu.: 12.00 1st Qu.:23.00 progabide:31 1st Qu.: 11.50 1st Qu.: 11.50
# Median : 22.00 Median :28.00 Median : 16.00 Median : 16.00
# Mean : 31.22 Mean :28.34 Mean : 33.05 Mean : 33.05
# 3rd Qu.: 41.00 3rd Qu.:32.00 3rd Qu.: 36.00 3rd Qu.: 36.00
# Max. :151.00 Max. :42.00 Max. :302.00 Max. :302.00
opar <- par(no.readonly = T)
par(mfrow=c(1, 2))
attach(breslow.dat)
hist(sumY, breaks = 20,
xlab = "Seizure Count",
main = "Distribution of Seizures")
boxplot(sumY ~ Trt, xlab = "Treatment", main = "Group Comparison")
par(opar)
fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, family=poisson())
summary(fit)
# Call:
# glm(formula = sumY ~ Base + Age + Trt, family = poisson(), data = breslow.dat)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -6.0569 -2.0433 -0.9397 0.7929 11.0061
#
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 1.9488259 0.1356191 14.370 < 2e-16 ***
# Base 0.0226517 0.0005093 44.476 < 2e-16 ***
# Age 0.0227401 0.0040240 5.651 1.59e-08 ***
# Trtprogabide -0.1527009 0.0478051 -3.194 0.0014 **
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for poisson family taken to be 1)
#
# Null deviance: 2122.73 on 58 degrees of freedom
# Residual deviance: 559.44 on 55 degrees of freedom
# AIC: 850.71
#
# Number of Fisher Scoring iterations: 5
#=======================================================
#13.3.1. Interpreting the model parameters
coef(fit)
# (Intercept) Base Age Trtprogabide
# 1.94882593 0.02265174 0.02274013 -0.15270095
summary(fit)
exp(coef(fit))
# (Intercept) Base Age Trtprogabide
# 7.0204403 1.0229102 1.0230007 0.8583864
#===================================================
# 13.3.2. Overdispersion
deviance(fit)/df.residual(fit)
# [1] 10.1717
# install.packages("qcc")
library(qcc)
qcc.overdispersion.test(breslow.dat$sumY, type = "poisson")
# Overdispersion test Obs.Var/Theor.Var Statistic p-value
# poisson data 62.87013 3646.468 0
fit.od <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
family=quasipoisson())
summary(fit.od)
# Call:
# glm(formula = sumY ~ Base + Age + Trt, family = quasipoisson(),
# data = breslow.dat)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -6.0569 -2.0433 -0.9397 0.7929 11.0061
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.948826 0.465091 4.190 0.000102 ***
# Base 0.022652 0.001747 12.969 < 2e-16 ***
# Age 0.022740 0.013800 1.648 0.105085
# Trtprogabide -0.152701 0.163943 -0.931 0.355702
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for quasipoisson family taken to be 11.76075)
#
# Null deviance: 2122.73 on 58 degrees of freedom
# Residual deviance: 559.44 on 55 degrees of freedom
# AIC: NA
#
# Number of Fisher Scoring iterations: 5
|