1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)
# 14.2.1. Selecting the number of components to extract
library(psych)
fa.parallel(USJudgeRatings[,-1], fa="pc", n.iter=100,
show.legend=FALSE, main="Scree plot with parallel analysis") # figure 14.2
# 14.2.2. Extracting principal components
# code listing 14.1. Principal components analysis of US Judge Ratings
library(psych)
pc <- principal(USJudgeRatings[, -1], nfactors = 1)
pc
# Principal Components Analysis
# Call: principal(r = USJudgeRatings[, -1], nfactors = 1)
# Standardized loadings (pattern matrix) based upon correlation matrix
# PC1 h2 u2 com
# INTG 0.92 0.84 0.1565 1
# DMNR 0.91 0.83 0.1663 1
# DILG 0.97 0.94 0.0613 1
# CFMG 0.96 0.93 0.0720 1
# DECI 0.96 0.92 0.0763 1
# PREP 0.98 0.97 0.0299 1
# FAMI 0.98 0.95 0.0469 1
# ORAL 1.00 0.99 0.0091 1
# WRIT 0.99 0.98 0.0196 1
# PHYS 0.89 0.80 0.2013 1
# RTEN 0.99 0.97 0.0275 1
#
# PC1
# SS loadings 10.13
# Proportion Var 0.92
#
# Mean item complexity = 1
# Test of the hypothesis that 1 component is sufficient.
#
# The root mean square of the residuals (RMSR) is 0.04
# with the empirical chi square 6.21 with prob < 1
#
# Fit based upon off diagonal values = 1
library(psych)
fa.parallel(Harman23.cor$cov, n.obs=302, fa="pc", n.iter =100,
show.legend=FALSE, main="Scree plot with parallel analysis") # figure 14.3
# code listing 14.2. Principal components analysis of body measurements
library(psych)
PC <- principal(Harman23.cor$cov, nfactors = 2, rotate = "none")
PC
# Principal Components Analysis
# Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "none")
# Standardized loadings (pattern matrix) based upon correlation matrix
# PC1 PC2 h2 u2 com
# height 0.86 -0.37 0.88 0.123 1.4
# arm.span 0.84 -0.44 0.90 0.097 1.5
# forearm 0.81 -0.46 0.87 0.128 1.6
# lower.leg 0.84 -0.40 0.86 0.139 1.4
# weight 0.76 0.52 0.85 0.150 1.8
# bitro.diameter 0.67 0.53 0.74 0.261 1.9
# chest.girth 0.62 0.58 0.72 0.283 2.0
# chest.width 0.67 0.42 0.62 0.375 1.7
#
# PC1 PC2
# SS loadings 4.67 1.77
# Proportion Var 0.58 0.22
# Cumulative Var 0.58 0.81
# Proportion Explained 0.73 0.27
# Cumulative Proportion 0.73 1.00
#
# Mean item complexity = 1.7
# Test of the hypothesis that 2 components are sufficient.
#
# The root mean square of the residuals (RMSR) is 0.05
#
# Fit based upon off diagonal values = 0.99
#======================================================
# 14.2.3. Rotating principal components
# code lisitng 14.3. Principal components analysis with varimax rotation
rc <- principal(Harman23.cor$cov, nfactors = 2, rotate = "varimax")
rc
# Principal Components Analysis
# Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "varimax")
# Standardized loadings (pattern matrix) based upon correlation matrix
# RC1 RC2 h2 u2 com
# height 0.90 0.25 0.88 0.123 1.2
# arm.span 0.93 0.19 0.90 0.097 1.1
# forearm 0.92 0.16 0.87 0.128 1.1
# lower.leg 0.90 0.22 0.86 0.139 1.1
# weight 0.26 0.88 0.85 0.150 1.2
# bitro.diameter 0.19 0.84 0.74 0.261 1.1
# chest.girth 0.11 0.84 0.72 0.283 1.0
# chest.width 0.26 0.75 0.62 0.375 1.2
#
# RC1 RC2
# SS loadings 3.52 2.92
# Proportion Var 0.44 0.37
# Cumulative Var 0.44 0.81
# Proportion Explained 0.55 0.45
# Cumulative Proportion 0.55 1.00
#
# Mean item complexity = 1.1
# Test of the hypothesis that 2 components are sufficient.
#
# The root mean square of the residuals (RMSR) is 0.05
#
# Fit based upon off diagonal values = 0.99
#=======================================================
# 14.2.4. Obtaining principal components scores
# code listing 14.4. Obtaining component scores from raw data
library(psych)
pc <- principal(USJudgeRatings[,-1], nfactors=1, score=TRUE)
head(pc$scores)
# PC1
# AARONSON,L.H. -0.1857981
# ALEXANDER,J.M. 0.7469865
# ARMENTANO,A.J. 0.0704772
# BERDON,R.I. 1.1358765
# BRACKEN,J.J. -2.1586211
# BURNS,E.B. 0.7669406
cor(USJudgeRatings$CONT, pc$score)
# PC1
# [1,] -0.008815895
# code listing 14.5. Obtaining principal component scoring coefficients
library(psych)
rc <- principal(Harman23.cor$cov, nfactors = 2, rotate = "varimax")
round(unclass(rc$weights), 2)
# RC1 RC2
# height 0.28 -0.05
# arm.span 0.30 -0.08
# forearm 0.30 -0.09
# lower.leg 0.28 -0.06
# weight -0.06 0.33
# bitro.diameter -0.08 0.32
# chest.girth -0.10 0.34
# chest.width -0.04 0.27
PC1 = 0.28*height + 0.30*arm.span + 0.30*forearm + 0.28*lower.leg -
0.06*weight - 0.08*bitro.diameter - 0.10*chest.girth -
0.04*chest.width
PC2 = -0.05*height - 0.08*arm.span - 0.09*forearm - 0.06*lower.leg +
0.33*weight + 0.32*bitro.diameter + 0.34*chest.girth +
0.27*chest.width
# 14.3. Exploratory factor analysis
options(digits = 2)
covariances <- ability.cov$cov
correlations <- cov2cor(covariances)
correlations
# general picture blocks maze reading vocab
# general 1.00 0.47 0.55 0.34 0.58 0.51
# picture 0.47 1.00 0.57 0.19 0.26 0.24
# blocks 0.55 0.57 1.00 0.45 0.35 0.36
# maze 0.34 0.19 0.45 1.00 0.18 0.22
# reading 0.58 0.26 0.35 0.18 1.00 0.79
# vocab 0.51 0.24 0.36 0.22 0.79 1.00
#===================================================
# 14.3.1. Deciding how many common factors to extract
# figure 14.4
library(psych)
covatiances <- ability.cov$cov
correlations <- cov2cor(covariances)
fa.parallel(correlations, n.obs = 112, fa="both",
n.iter = 100, main = "Scree plots with parallel analysis")
# 14.3.2. Extracting common factors
# code listing 14.6. Principal axis factoring without rotation
fa <- fa(correlations, nfactors = 2, rotate = "none", fm="pa")
fa
# Factor Analysis using method = pa
# Call: fa(r = correlations, nfactors = 2, rotate = "none", fm = "pa")
# Standardized loadings (pattern matrix) based upon correlation matrix
# PA1 PA2 h2 u2 com
# general 0.75 0.07 0.57 0.432 1.0
# picture 0.52 0.32 0.38 0.623 1.7
# blocks 0.75 0.52 0.83 0.166 1.8
# maze 0.39 0.22 0.20 0.798 1.6
# reading 0.81 -0.51 0.91 0.089 1.7
# vocab 0.73 -0.39 0.69 0.313 1.5
#
# PA1 PA2
# SS loadings 2.75 0.83
# Proportion Var 0.46 0.14
# Cumulative Var 0.46 0.60
# Proportion Explained 0.77 0.23
# Cumulative Proportion 0.77 1.00
#
# Mean item complexity = 1.5
# Test of the hypothesis that 2 factors are sufficient.
#
# The degrees of freedom for the null model are 15 and the objective function was 2.5
# The degrees of freedom for the model are 4 and the objective function was 0.07
#
# The root mean square of the residuals (RMSR) is 0.03
# The df corrected root mean square of the residuals is 0.06
#
# Fit based upon off diagonal values = 0.99
# Measures of factor score adequacy
# PA1 PA2
# Correlation of (regression) scores with factors 0.96 0.92
# Multiple R square of scores with factors 0.93 0.84
# Minimum correlation of possible factor scores 0.86 0.68
#===========================================================
# 14.3.3. Rotating factors
# code listing 14.7. Factor extraction with orthogonal rotation
fa.varimax <- fa(correlations, nfactors = 2, rotate="varimax", fm="pa")
fa.varimax
# Factor Analysis using method = pa
# Call: fa(r = correlations, nfactors = 2, rotate = "varimax", fm = "pa")
# Standardized loadings (pattern matrix) based upon correlation matrix
# PA1 PA2 h2 u2 com
# general 0.49 0.57 0.57 0.432 2.0
# picture 0.16 0.59 0.38 0.623 1.1
# blocks 0.18 0.89 0.83 0.166 1.1
# maze 0.13 0.43 0.20 0.798 1.2
# reading 0.93 0.20 0.91 0.089 1.1
# vocab 0.80 0.23 0.69 0.313 1.2
#
# PA1 PA2
# SS loadings 1.83 1.75
# Proportion Var 0.30 0.29
# Cumulative Var 0.30 0.60
# Proportion Explained 0.51 0.49
# Cumulative Proportion 0.51 1.00
#
# Mean item complexity = 1.3
# Test of the hypothesis that 2 factors are sufficient.
#
# The degrees of freedom for the null model are 15 and the objective function was 2.5
# The degrees of freedom for the model are 4 and the objective function was 0.07
#
# The root mean square of the residuals (RMSR) is 0.03
# The df corrected root mean square of the residuals is 0.06
#
# Fit based upon off diagonal values = 0.99
# Measures of factor score adequacy
# PA1 PA2
# Correlation of (regression) scores with factors 0.96 0.92
# Multiple R square of scores with factors 0.91 0.85
# Minimum correlation of possible factor scores 0.82 0.71
#============================================================
# code listing 14.8. Factor extraction with oblique rotation
# install.packages("GPArotation")
fa.promax <- fa(correlations, nfactors = 2, rotate="promax", fm="pa")
fa.promax
# Factor Analysis using method = pa
# Call: fa(r = correlations, nfactors = 2, rotate = "promax", fm = "pa")
# Standardized loadings (pattern matrix) based upon correlation matrix
# PA1 PA2 h2 u2 com
# general 0.37 0.48 0.57 0.432 1.9
# picture -0.03 0.63 0.38 0.623 1.0
# blocks -0.10 0.97 0.83 0.166 1.0
# maze 0.00 0.45 0.20 0.798 1.0
# reading 1.00 -0.09 0.91 0.089 1.0
# vocab 0.84 -0.01 0.69 0.313 1.0
#
# PA1 PA2
# SS loadings 1.83 1.75
# Proportion Var 0.30 0.29
# Cumulative Var 0.30 0.60
# Proportion Explained 0.51 0.49
# Cumulative Proportion 0.51 1.00
#
# With factor correlations of
# PA1 PA2
# PA1 1.00 0.55
# PA2 0.55 1.00
#
# Mean item complexity = 1.2
# Test of the hypothesis that 2 factors are sufficient.
#
# The degrees of freedom for the null model are 15 and the objective function was 2.5
# The degrees of freedom for the model are 4 and the objective function was 0.07
#
# The root mean square of the residuals (RMSR) is 0.03
# The df corrected root mean square of the residuals is 0.06
#
# Fit based upon off diagonal values = 0.99
# Measures of factor score adequacy
# PA1 PA2
# Correlation of (regression) scores with factors 0.97 0.94
# Multiple R square of scores with factors 0.93 0.88
# Minimum correlation of possible factor scores 0.86 0.77
fsm <- function(oblique) {
if (class(oblique)[2] == "fa" & is.null(oblique$Phi)) {
warning("Object doesn't look like oblique EFA")
} else {
P <- unclass(oblique$loading)
F <- P %*% oblique$Phi
colnames(F) <- c("PA1", "PA2")
return(F)
}
}
fsm(fa.promax)
# PA1 PA2
# general 0.64 0.69
# picture 0.32 0.61
# blocks 0.43 0.91
# maze 0.25 0.45
# reading 0.95 0.46
# vocab 0.83 0.45
factor.plot(fa.promax, labels=rownames(fa.promax$loadings)) # figure 14.5
fa.diagram(fa.promax, simple = F)
# 14.3.4. Factor scores
fa.promax$weights
# PA1 PA2
# general 0.078 0.211
# picture 0.020 0.090
# blocks 0.037 0.702
# maze 0.027 0.035
# reading 0.743 0.030
# vocab 0.177 0.036`
|