1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)
# 15.1. Creating a time-series object in R
# code listing 15.1. Creating a time-series object
sales <- c(18, 33, 41, 7, 34, 35, 24, 25, 24, 21, 25, 20,
22, 31, 40, 29, 25, 21, 22, 54, 31, 25, 26, 35)
tsales <- ts(sales, start = c(2003, 1), frequency = 12)
tsales
# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
# 2003 18 33 41 7 34 35 24 25 24 21 25 20
# 2004 22 31 40 29 25 21 22 54 31 25 26 35
plot(tsales) # figure 15.2
plot(tsales, type="o", pch=17, col="blue") # figure 15.2-1
start(tsales)
# [1] 2003 1
end(tsales)
# [1] 2004 12
frequency(tsales)
# [1] 12
tsales.subset <- window(tsales, start=c(2003, 5), end=c(2004, 6))
tsales.subset
# Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
# 2003 34 35 24 25 24 21 25 20
# 2004 22 31 40 29 25 21
#===============================================================
# 15.2.1. Smoothing with simple moving averages
# code listing 15.2 Simple moving averages
# install.packages("forecast")
library(forecast)
opar <- par(no.readonly = T)
par(mfrow=c(2,2))
ylim <- c(min(Nile), max(Nile))
plot(Nile, main="Raw time series")
plot(ma(Nile, 3), main="Simple Moving Averages (k=3)", ylim=ylim)
plot(ma(Nile, 3), main="Simple Moving Averages (k=7)", ylim=ylim)
plot(ma(Nile, 7), main="Simple Moving Averages (k=15)", ylim=ylim)
par(opar)
# 15.2.2. Seasonal decomposition
# code listing 15.3. Seasonal decomposition using stl()
opar <- par(no.readonly = T)
par(mfrow=c(2,1))
plot(AirPassengers)
lAirPassengers <- log(AirPassengers)
plot(lAirPassengers, ylab="log(AirPassengers)")
par(opar)
fit <- stl(lAirPassengers, s.window = "period")
plot(fit)
head(fit$time.series)
# seasonal trend remainder
# Jan 1949 -0.092 4.8 -0.019
# Feb 1949 -0.114 4.8 0.054
# Mar 1949 0.016 4.8 0.036
# Apr 1949 -0.014 4.8 0.040
# May 1949 -0.015 4.8 -0.025
# Jun 1949 0.110 4.8 -0.043
head(exp(fit$time.series))
# seasonal trend remainder
# Jan 1949 0.91 125 0.98
# Feb 1949 0.89 125 1.06
# Mar 1949 1.02 125 1.04
# Apr 1949 0.99 126 1.04
# May 1949 0.99 126 0.98
# Jun 1949 1.12 126 0.96
# figure 15.7
opar <- par(no.readonly = T)
par(mfrow=c(2,1))
library(forecast)
monthplot(AirPassengers, xlab = "", ylab = "")
seasonplot(AirPassengers, year.labels = "T", main = "")
par(opar)
# 15.3.1. Simple exponential smoothing
# code listing 15.4. Simple exponential smoothing
library(forecast)
fit <- ets(nhtemp, model = "ANN")
fit
# ETS(A,N,N)
#
# Call:
# ets(y = nhtemp, model = "ANN")
#
# Smoothing parameters:
# alpha = 0.1819
#
# Initial states:
# l = 50.2762
#
# sigma: 1.1
#
# AIC AICc BIC
# 266 266 272
nhtemp
# Time Series:
# Start = 1912
# End = 1971
# Frequency = 1
# [1] 50 52 49 51 49 48 50 51 49 52 51 50 49 51 48 51 51 51 52 53 52 51 50 50 50 52 52 51 49
# [30] 52 51 51 52 52 52 51 51 54 51 53 53 55 52 52 51 53 50 53 52 52 50 51 52 51 52 51 52 52
# [59] 52 53
forecast(fit, 1)
# Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
# 1972 52 50 53 50 54
plot(forecast(fit, 1), xlab = "Year",
ylab = expression(paste("Temperature (", degree*F,")",)),
main = "New Haven Annual Mean Temperature") # figure 15.8
accuracy(fit)
# ME RMSE MAE MPE MAPE MASE ACF1
# Training set 0.15 1.1 0.9 0.24 1.7 0.75 -0.0064
#=================================================================
# 15.3.2. Holt and Holt-Winters exponential smoothing
# code listing 15.5. Exponential smoothing with level, slope, and seasonal components
library(forecast)
fit <- ets(log(AirPassengers), model = "AAA")
fit
# ETS(A,A,A)
#
# Call:
# ets(y = log(AirPassengers), model = "AAA")
#
# Smoothing parameters:
# alpha = 0.6975
# beta = 0.0031
# gamma = 1e-04
#
# Initial states:
# l = 4.7925
# b = 0.0111
# s = -0.1 -0.22 -0.079 0.056 0.2 0.21
# 0.11 -0.0081 -0.0059 0.022 -0.11 -0.084
#
# sigma: 0.038
#
# AIC AICc BIC
# -207 -202 -157
accuracy(fit)
# ME RMSE MAE MPE MAPE MASE ACF1
# Training set -0.0018 0.036 0.028 -0.034 0.51 0.23 0.056
pred <- forecast(fit, 5)
pred
# Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
# Jan 1961 6.1 6.1 6.2 6.0 6.2
# Feb 1961 6.1 6.0 6.2 6.0 6.2
# Mar 1961 6.2 6.2 6.3 6.1 6.3
# Apr 1961 6.2 6.1 6.3 6.1 6.3
# May 1961 6.2 6.1 6.3 6.1 6.4
plot(pred, main = "Forecast for Air Travel",
ylab = "Log(Airpassengers)", xlab = "Time") # figure 15.9
pred$mean <- exp(pred$mean)
pred$lower <- exp(pred$lower)
pred$upper <- exp(pred$upper)
p <- cbind(pred$mean, pred$lower, pred$upper)
dimnames(p)[[2]] <- c("mean", "Lo 80", "Lo 95", "Hi 80", "Hi 95")
p
# mean Lo 80 Lo 95 Hi 80 Hi 95
# Jan 1961 450 429 418 473 485
# Feb 1961 443 417 404 470 485
# Mar 1961 511 477 460 548 568
# Apr 1961 502 465 446 542 565
# May 1961 506 465 445 551 576
#===============================================================
# 15.3.3. The ets() function and automated forecasting
# code lisitng Automatic exponential forecasting with ets()
library(forecast)
fit <- ets(JohnsonJohnson)
fit
# ETS(M,A,A)
#
# Call:
# ets(y = JohnsonJohnson)
#
# Smoothing parameters:
# alpha = 0.2776
# beta = 0.0636
# gamma = 0.5867
#
# Initial states:
# l = 0.6276
# b = 0.0165
# s = -0.23 0.19 -0.0074 0.045
#
# sigma: 0.092
#
# AIC AICc BIC
# 164 166 186
plot(forecast(fit), main = "Johnson & Johnson Forecasts",
ylab = "Quarterly Earnings (Dollars)", xlab = "Time", flty=2) # figure 15.10
fit2 <- ets(JohnsonJohnson, model = "MMM")
fit2
# ETS(M,M,M)
#
# Call:
# ets(y = JohnsonJohnson, model = "MMM")
#
# Smoothing parameters:
# alpha = 0.2195
# beta = 0.0341
# gamma = 0.5675
#
# Initial states:
# l = 0.625
# b = 1.0265
# s = 0.7 1.3 0.98 1.1
#
# sigma: 0.091
#
# AIC AICc BIC
# 164 166 186
#========================================
# 15.4.2. ARMA and ARIMA models
# code listing 15.7. Transforming the time series and assessing stationarity
library(forecast)
library(tseries)
# figure 15.11
opar <- par(no.readonly = T)
par(mfrow=c(2,1))
plot(Nile)
ndiffs(Nile)
# [1] 1
dNile <- diff(Nile)
plot(dNile)
adf.test(dNile)
# Augmented Dickey-Fuller Test
#
# data: dNile
# Dickey-Fuller = -7, Lag order = 4, p-value = 0.01
# alternative hypothesis: stationary
par(opar)
# figure 15.12
opar <- par(no.readonly = T)
par(mfrow=c(2,1))
Acf(dNile)
Pacf(dNile)
# code listing 15.8. Fitting an ARIMA model
library(forecast)
fit <- arima(Nile, order = c(0, 1, 1))
fit
# Call:
# arima(x = Nile, order = c(0, 1, 1))
#
# Coefficients:
# ma1
# -0.73
# s.e. 0.11
#
# sigma^2 estimated as 20600: log likelihood = -633, aic = 1269
accuracy(fit)
# ME RMSE MAE MPE MAPE MASE ACF1
# Training set -12 143 112 -3.6 13 0.84 0.12
# code listing 15.9. Evaluating the model fit
# figure 15.13
qqnorm(fit$residuals)
qqline(fit$residuals)
Box.test(fit$residuals, type = "Ljung-Box")
# Box-Ljung test
#
# data: fit$residuals
# X-squared = 1, df = 1, p-value = 0.2
# code listing 15.10. Forecasting with an ARIMA model
forecast(fit, 3)
# Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
# 1971 798 614 982 517 1080
# 1972 798 608 989 507 1090
# 1973 798 602 995 498 1099
plot(forecast(fit, 3), xlab = "Year", ylab = "Annual Flow") # figure 15.14
# 15.4.3. Automated ARIMA forecasting
# code listing 15.11. Automated ARIMA forecasting
library(forecast)
fit <- auto.arima(sunspots)
fit
# Series: sunspots
# ARIMA(2,1,2)
#
# Coefficients:
# ar1 ar2 ma1 ma2
# 1.35 -0.396 -1.77 0.810
# s.e. 0.03 0.029 0.02 0.019
#
# sigma^2 estimated as 244: log likelihood=-11746
# AIC=23501 AICc=23501 BIC=23531
forecast(fit, 3)
# Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
# Jan 1984 40 20 60 9.8 71
# Feb 1984 41 18 64 6.0 77
# Mar 1984 40 15 64 2.2 77
accuracy(fit)
# ME RMSE MAE MPE MAPE MASE ACF1
# Training set -0.027 16 11 NaN Inf 0.48 -0.011
|