1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)
# 18.2. Identifying missing values
# install.packages("VIM")
data(sleep, package="VIM")
# list the rows that do not have missing values
sleep[complete.cases(sleep),]
# list the rows that have one or more missing values
sleep[!complete.cases(sleep),]
sum(is.na(sleep$Dream))
# [1] 12
mean(is.na(sleep$Dream))
# [1] 0.1935484
mean(!complete.cases(sleep))
# [1] 0.3225806
# 18.3.1. Tabulating missing values
# install.packages("mice")
library(mice)
data(sleep, package = "VIM")
md.pattern(sleep) # figure 18.2
# 18.3.2. Exploring missing data visually
library("VIM")
aggr(sleep, prop=FALSE, numbers=TRUE) # figure 18.2-2
matrixplot(sleep, sortby = "BrainWgt") # figure 18.3
marginplot(sleep[c("Gest", "Dream")], pch = c(20),
col = c("darkgray", "red", "blue")) # figure 18.4
# 18.3.3. Using correlations to explore missing values
x <- as.data.frame(abs(is.na(sleep)))
head(sleep, 5)
# BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
# 1 6654.000 5712.0 NA NA 3.3 38.6 645 3 5 3
# 2 1.000 6.6 6.3 2.0 8.3 4.5 42 3 1 3
# 3 3.385 44.5 NA NA 12.5 14.0 60 1 1 1
# 4 0.920 5.7 NA NA 16.5 NA 25 5 2 3
# 5 2547.000 4603.0 2.1 1.8 3.9 69.0 624 3 5 4
head(x, 5)
# BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
# 1 0 0 1 1 0 0 0 0 0 0
# 2 0 0 0 0 0 0 0 0 0 0
# 3 0 0 1 1 0 0 0 0 0 0
# 4 0 0 1 1 0 1 0 0 0 0
# 5 0 0 0 0 0 0 0 0 0 0
y <- x[which(apply(x, 2, sum) > 0)]
cor(y)
# NonD Dream Sleep Span Gest
# NonD 1.00000000 0.90711474 0.48626454 0.01519577 -0.14182716
# Dream 0.90711474 1.00000000 0.20370138 0.03752394 -0.12865350
# Sleep 0.48626454 0.20370138 1.00000000 -0.06896552 -0.06896552
# Span 0.01519577 0.03752394 -0.06896552 1.00000000 0.19827586
# Gest -0.14182716 -0.12865350 -0.06896552 0.19827586 1.00000000
cor(sleep, y, use = "pairwise.complete.obs")
# NonD Dream Sleep Span Gest
# BodyWgt 0.22682614 0.22259108 0.001684992 -0.05831706 -0.05396818
# BrainWgt 0.17945923 0.16321105 0.007859438 -0.07921370 -0.07332961
# NonD NA NA NA -0.04314514 -0.04553485
# Dream -0.18895206 NA -0.188952059 0.11699247 0.22774685
# Sleep -0.08023157 -0.08023157 NA 0.09638044 0.03976464
# Span 0.08336361 0.05981377 0.005238852 NA -0.06527277
# Gest 0.20239201 0.05140232 0.159701523 -0.17495305 NA
# Pred 0.04758438 -0.06834378 0.202462711 0.02313860 -0.20101655
# Exp 0.24546836 0.12740768 0.260772984 -0.19291879 -0.19291879
# Danger 0.06528387 -0.06724755 0.208883617 -0.06666498 -0.20443928
#=======================================================================
# 18.6. Complete-case analysis(listwise deletion)
options(digits = 1)
cor(na.omit(sleep))
# BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
# BodyWgt 1.00 0.96 -0.4 -0.07 -0.3 0.47 0.71 0.10 0.4 0.26
# BrainWgt 0.96 1.00 -0.4 -0.07 -0.3 0.63 0.73 -0.02 0.3 0.15
# NonD -0.39 -0.39 1.0 0.52 1.0 -0.37 -0.61 -0.35 -0.6 -0.53
# Dream -0.07 -0.07 0.5 1.00 0.7 -0.27 -0.41 -0.40 -0.5 -0.57
# Sleep -0.34 -0.34 1.0 0.72 1.0 -0.38 -0.61 -0.40 -0.6 -0.60
# Span 0.47 0.63 -0.4 -0.27 -0.4 1.00 0.65 -0.17 0.3 0.01
# Gest 0.71 0.73 -0.6 -0.41 -0.6 0.65 1.00 0.09 0.6 0.31
# Pred 0.10 -0.02 -0.4 -0.40 -0.4 -0.17 0.09 1.00 0.6 0.93
# Exp 0.41 0.32 -0.6 -0.50 -0.6 0.32 0.57 0.63 1.0 0.79
# Danger 0.26 0.15 -0.5 -0.57 -0.6 0.01 0.31 0.93 0.8 1.00
# alternative
# cor(sleep, use="complete.obs)
#========================================================================
fit <- lm(Dream ~ Span + Gest, data = na.omit(sleep))
summary(fit)
# Call:
# lm(formula = Dream ~ Span + Gest, data = na.omit(sleep))
#
# Residuals:
# Min 1Q Median 3Q Max
# -2.333 -0.915 -0.221 0.382 4.183
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 2.480122 0.298476 8.31 3.7e-10 ***
# Span -0.000472 0.013130 -0.04 0.971
# Gest -0.004394 0.002081 -2.11 0.041 *
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1 on 39 degrees of freedom
# Multiple R-squared: 0.167, Adjusted R-squared: 0.125
# F-statistic: 3.92 on 2 and 39 DF, p-value: 0.0282
# 18.7. Multiple imputation
library(mice)
data(sleep, package = "VIM")
imp <- mice(sleep, seed = 1234)
fit <- with(imp, lm(Dream ~ Span + Gest))
pooled <- pool(fit)
summary(pooled)
# term estimate std.error statistic df p.value
# 1 (Intercept) 2.597 0.249 10.4 52 2e-14
# 2 Span -0.004 0.012 -0.3 56 7e-01
# 3 Gest -0.004 0.001 -3.0 55 5e-03
imp
# Class: mids
# Number of multiple imputations: 5
# Imputation methods:
# BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
# "" "" "pmm" "pmm" "pmm" "pmm" "pmm" "" "" ""
# PredictorMatrix:
# BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
# BodyWgt 0 1 1 1 1 1 1 1 1 1
# BrainWgt 1 0 1 1 1 1 1 1 1 1
# NonD 1 1 0 1 1 1 1 1 1 1
# Dream 1 1 1 0 1 1 1 1 1 1
# Sleep 1 1 1 1 0 1 1 1 1 1
# Span 1 1 1 1 1 0 1 1 1 1
# Number of logged events: 5
# it im dep meth out
# 1 3 2 Span pmm Sleep
# 2 3 2 Gest pmm Sleep
# 3 4 2 Span pmm Sleep
# 4 4 2 Gest pmm Sleep
# 5 4 4 Span pmm Sleep
imp$imp$Dream
# 1 2 3 4 5
# 1 0.0 0.5 0.5 0.5 0.3
# 3 0.5 1.4 1.5 1.5 1.3
# 4 3.6 4.1 3.1 4.1 2.7
# 14 0.3 1.0 0.5 0.0 0.0
# 24 3.6 0.8 1.4 1.4 0.9
# 26 2.4 0.5 3.9 3.4 1.2
# 30 2.6 0.8 2.4 2.2 3.1
# 31 0.6 1.3 1.2 1.8 2.1
# 47 1.3 1.8 1.8 1.8 3.9
# 53 0.5 0.5 0.6 0.5 0.3
# 55 2.6 3.6 2.4 1.8 0.5
# 62 1.5 3.4 3.9 3.4 2.2
str(imp)
options(digits = 3)
dataset3 <- complete(imp, action = 3)
head(dataset3,10)
# 18.8.1. Pairwise deletion
cor(sleep, use = "pairwise.complete.obs")
# BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
# BodyWgt 1.0000 0.9342 -0.376 -0.109 -0.307 0.3025 0.651 0.0595 0.338 0.1336
# BrainWgt 0.9342 1.0000 -0.369 -0.105 -0.358 0.5093 0.747 0.0339 0.368 0.1459
# NonD -0.3759 -0.3692 1.000 0.514 0.963 -0.3844 -0.595 -0.3182 -0.544 -0.4839
# Dream -0.1094 -0.1051 0.514 1.000 0.727 -0.2957 -0.451 -0.4475 -0.537 -0.5793
# Sleep -0.3072 -0.3581 0.963 0.727 1.000 -0.4102 -0.631 -0.3958 -0.642 -0.5877
# Span 0.3025 0.5093 -0.384 -0.296 -0.410 1.0000 0.615 -0.1025 0.360 0.0618
# Gest 0.6511 0.7472 -0.595 -0.451 -0.631 0.6148 1.000 0.2005 0.638 0.3786
# Pred 0.0595 0.0339 -0.318 -0.447 -0.396 -0.1025 0.201 1.0000 0.618 0.9160
# Exp 0.3383 0.3678 -0.544 -0.537 -0.642 0.3604 0.638 0.6182 1.000 0.7872
# Danger 0.1336 0.1459 -0.484 -0.579 -0.588 0.0618 0.379 0.9160 0.787 1.0000
|