1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)
pkg <- "npar_1.0.tar.gz"
loc <- "http://www.statmethods.net/RiA"
url <- paste(loc, pkg, sep="/")
download.file(url, pkg)
install.packages(pkg, repos=NULL, type="source")
# 21.1. Nonparametric analysis and the npar package
library(npar)
hist(life$hlef, xlab = "Healthy Life Expectancy (years) at Age 65",
main = "Distribution of Healthy Life Expectancy for Women",
col = "grey", breaks = 10) # figure 21.1
# figure 21.2
library(ggplot2)
ggplot(data = life, aes(x=region, y=hlef)) +
geom_point(size=3, color="darkgrey") +
labs(title = "Distribution of HLE Estimates by Region",
x="US Region", y="Healthy Life Expectancy at Age 65") +
theme_bw()
# 21.1.1. Comparing groups with the npar package
# code listing 21.1. Comparison of HLE estimates with the npar package
library(npar)
results <- oneway(hlef ~ region, life)
summary(results)
# data: hlef on region
#
# Omnibus Test
# Kruskal-Wallis chi-squared = 17.8749, df = 3, p-value = 0.0004668
#
# Descriptive Statistics
# South North Central West Northeast
# n 16.0000 12.00000 13.0000 9.00000
# median 13.0000 15.40000 15.6000 15.70000
# mad 1.4826 1.26021 0.7413 0.59304
#
# Multiple Comparisons (Wilcoxon Rank Sum Tests)
# Probability Adjustment = holm
# Group.1 Group.2 W p
# 1 South North Central 28.0 0.008583179 **
# 2 South West 27.0 0.004737844 **
# 3 South Northeast 17.0 0.008583179 **
# 4 North Central West 63.5 1.000000000
# 5 North Central Northeast 42.0 1.000000000
# 6 West Northeast 54.5 1.000000000
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(results, col="lightblue", main="Multiple Comparisons",
xlab="US Region",
ylab="Healthy Life Expectancy (years) at Age 65")
#==========================================================
# 21.2.1. Computing the statistics
# code listing 21.2. Contents of the oneway.R file
#' @title Nonparametric group comparisons
#'
#' @description
#' \code{oneway} computes nonparametric group comparisons, including an
#' omnibus test and post-hoc pairwise group comparisons.
#'
#' @details
#' This function computes an omnibus Kruskal-Wallis test that the
#' groups are equal, followed by all pairwise comparisons using
#' Wilcoxon Rank Sum tests. Exact Wilcoxon tests can be requested if
#' there are no ties on the dependent variable. The p-values are
#' adjusted for multiple comparisons using the \code{\link{p.adjust}}
#' function.
#'
#' @param formula an object of class formula, relating the dependent
#' variable to the grouping variable.
#' @param data a data frame containing the variables in the model.
#' @param exact logical. If \code{TRUE}, calculate exact Wilcoxon tests.
#' @param sort logical. If \code{TRUE}, sort groups by median dependent
#' variable values.
#' @param method method for correcting p-values for multiple comparisons.
#' @export
#' @return a list with 7 elements:
#' \item{CALL}{function call}
#' \item{data}{data frame containing the depending and grouping variable}
#' \item{sumstats}{data frame with descriptive statistics by group}
#' \item{kw}{results of the Kruskal-Wallis test}
#' \item{method}{method used to adjust p-values}
#' \item{wmc}{data frame containing the multiple comparisons}
#' \item{vnames}{variable names}
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>
#' @examples
#' results <- oneway(hlef ~ region, life)
#' summary(results)
#' plot(results, col="lightblue", main="Multiple Comparisons",
#' xlab="US Region", ylab="Healthy Life Expectancy at Age 65")
# 1. Function call
oneway <- function(formula, data, exact=FALSE, sort=TRUE,
method=c("holm", "hochberg", "hommel", "bonferroni",
"BH", "BY", "fdr", "none")){
# 2. Checks arguments
if (missing(formula) || class(formula) != "formula" ||
length(all.vars(formula)) != 2)
stop("'formula' is missing or incorrect")
method <- match.arg(method)
# 3. Sets up data
df <- model.frame(formula, data)
y <- df[[1]]
g <- as.factor(df[[2]])
vnames <- names(df)
# 4. Reorders factor levels
if(sort) g <- reorder(g, y, FUN=median)
groups <- levels(g)
k <- nlevels(g)
# 5. Summary statistics
getstats <- function(x)(c(N = length(x), Median = median(x),
MAD = mad(x)))
sumstats <- t(aggregate(y, by=list(g), FUN=getstats)[2])
rownames(sumstats) <- c("n", "median", "mad")
colnames(sumstats) <- groups
# 6. Statistical tests
kw <- kruskal.test(formula, data)
wmc <- NULL
for (i in 1:(k-1)){
for (j in (i+1):k){
y1 <- y[g==groups[i]]
y2 <- y[g==groups[j]]
test <- wilcox.test(y1, y2, exact=exact)
r <- data.frame(Group.1=groups[i], Group.2=groups[j],
W=test$statistic[[1]], p=test$p.value)
# note the [[]] to return a single number
wmc <- rbind(wmc, r)
}
}
wmc$p <- p.adjust(wmc$p, method=method)
# 7.Return results
data <- data.frame(y, g)
names(data) <- vnames
results <- list(CALL = match.call(),
data=data,
sumstats=sumstats, kw=kw,
method=method, wmc=wmc, vnames=vnames)
class(results) <- c("oneway", "list")
return(results)
}
# 21.2.2. Printing the results
print(results)
# data: hlef by region
#
# Multiple Comparisons (Wilcoxon Rank Sum Tests)
# Probability Adjustment = holm
# Group.1 Group.2 W p
# 1 South North Central 28.0 0.008583179
# 2 South West 27.0 0.004737844
# 3 South Northeast 17.0 0.008583179
# 4 North Central West 63.5 1.000000000
# 5 North Central Northeast 42.0 1.000000000
# 6 West Northeast 54.5 1.000000000
# code listing 21.3. Contents of the print.R file
#' @title Print multiple comparisons
#'
#' @description
#' \code{print.oneway} prints pairwise group comparisons.
#'
#' @details
#' This function prints Wilcoxon pairwise multiple comparisons created
#' by the \code{\link{oneway}} function.
#'
#' @param x an object of class \code{oneway}.
#' @param ... additional arguments passed to the function.
#' @method print oneway
#' @export
#' @return the input object is returned silently.
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>
#' @examples
#' results <- oneway(hlef ~ region, life)
#' print(results)
print.oneway <- function(x, ...){
# 1. Checks input
if (!inherits(x, "oneway"))
stop("Object must be of class 'oneway'")
# 2.Print the header
cat("data:", x$vnames[1], "by", x$vnames[2], "\n\n")
cat("Multiple Comparisons (Wilcoxon Rank Sum Tests)\n")
cat(paste("Probability Adjustment = ", x$method, "\n", sep=""))
# 3. print the table
print(x$wmc, ...)
}
# 21.2.3. Summarizing the results
summary(results)
# code lisitng 21.4. Contents of the summary.R file
#' @title Summarize oneway nonparametric analyses
#'
#' @description
#' \code{summary.oneway} summarizes the results of a oneway
#' nonparametric analysis.
#'
#' @details
#' This function prints a summary of analyses produced by
#' the \code{\link{oneway}} function. This includes descriptive
#' statistics by group, an omnibus Kruskal-Wallis test, and
#' Wilcoxon pairwise multiple comparisons.
#'
#' @param object an object of class \code{oneway}.
#' @param ... additional parameters.
#' @method summary oneway
#' @export
#' @return the input object is returned silently.
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>
#' @examples
#' results <- oneway(hlef ~ region, life)
#' summary(results)
summary.oneway <- function(object, ...){
if (!inherits(object, "oneway"))
stop("Object must be of class 'oneway'")
if(!exists("digits")) digits <- 4L
kw <- object$kw
wmc <- object$wmc
cat("data:", object$vnames[1], "on", object$vnames[2], "\n\n")
# Kruskal-Wallis test
cat("Omnibus Test\n")
cat(paste("Kruskal-Wallis chi-squared = ",
round(kw$statistic,4),
", df = ", round(kw$parameter, 3),
", p-value = ",
format.pval(kw$p.value, digits = digits),
"\n\n", sep=""))
# Descriptive Statistics
cat("Descriptive Statistics\n")
print(object$sumstats, ...)
# Table annotation
wmc$stars <- " "
wmc$stars[wmc$p < .1] <- "."
wmc$stars[wmc$p < .05] <- "*"
wmc$stars[wmc$p < .01] <- "**"
wmc$stars[wmc$p < .001] <- "***"
names(wmc)[which(names(wmc)=="stars")] <- " "
# Pairwise multiple comparisons
cat("\nMultiple Comparisons (Wilcoxon Rank Sum Tests)\n")
cat(paste("Probability Adjustment = ", object$method, "\n", sep=""))
print(wmc, ...)
cat("---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
1\n")
}
# 21.2.4. Plotting the results
# code listing 21.5. Contents of the plot.R file
#' @title Plot nonparametric group comparisons
#'
#' @description
#' \code{plot.oneway} plots nonparametric group comparisons.
#'
#' @details
#' This function plots nonparametric group comparisons
#' created by the \code{\link{oneway}} function using
#' annotated side by side boxplots. Medians and
#' sample sizes are placed at the top of the chart.
#' The overall median is represented by a horizontal
#' dashed line.
#'
#' @param x an object of class \code{oneway}.
#' @param ... additional arguments passed to the
#' \code{\link{boxplot}} function.
#' @method plot oneway
#' @export
#' @return NULL
#' @author Rob Kabacoff <rkabacoff@@statmethods.net>
#' @examples
#' results <- oneway(hlef ~ region, life)
#' plot(results, col="lightblue", main="Multiple Comparisons",
#' xlab="US Region", ylab="Healthy Life Expectancy at Age 65")
plot.oneway <- function(x, ...){
# 1. Checks input
if (!inherits(x, "oneway"))
stop("Object must be of class 'oneway'")
# 2. Generates the box plots
data <- x$data
y <- data[,1]
g <- data[,2]
stats <- x$sumstats
lbl <- paste("md=", stats[2,], "\nn=", stats[1,], sep="")
opar <- par(no.readonly=TRUE)
par(mar=c(5,4,8,2))
boxplot(y~g, ...)
# 3. Annotates the plot
abline(h=median(y), lty=2, col="darkgrey")
axis(3, at=1:length(lbl), labels=lbl, cex.axis=.9)
par(opar)
}
# 21.2.5. Adding sample data to the package
# code listing 21.6. Creating the life data frame
region <- c(rep("North Central", 12), rep("Northeast", 9),
rep("South", 16), rep("West", 13))
state <- c("IL","IN","IA","KS","MI","MN","MO","NE","ND","OH","SD","WI",
"CT","ME","MA","NH","NJ","NY","PA","RI","VT","AL","AR","DE",
"FL","GA","KY","LA","MD","MS","NC","OK","SC","TN","TX","VA",
"WV","AK","AZ","CA","CO","HI","ID","MT","NV","NM","OR","UT",
"WA","WY")
hlem <- c(12.6,12.2,13.4,13.1,12.8,14.3,11.7,13.1,12.9,12.2,13.3,13.4,
14.3,13.5,13.8,14,12.9,13.6,12.8,13.1,13.9,10.3,11.6,13.5,
14.3,11.6,10.2,11.6,13.3,10.1,11.7,10.8,12,11.2,12.2,13.3,
10.3,13.3,13.7,13.8,14.3,15,13.1,13.4,12.8,13.1,13.9,14.3,14,
13.7)
hlef <- c(14.3,14.1,15.9,15.1,14.7,16.7,14,15.7,16,14,16.4,16.1,16.7,
15.7,15.9,16,14.8,15.3,14.8,15.6,16.2,11.7,12.7,15.7,16.4,
13.1,11.6,12.3,15.3,11.4,13.5,12.9,13.6,12.5,13.4,14.9,11.6,
14.9,16.3,15.5,16.2,17.3,15.1,15.6,14.5,14.7,16,15.7,16,15.2)
life <- data.frame(region=factor(region), state=factor(state), hlem, hlef)
save(life, file='life.rda')
# code listing 21.7. Contents of the life.R file
#' @title Healthy Life Expectancy at Age 65
#'
#' @description A dataset containing the healthy life expectancy (expected
#' years of life in good health) at age 65, by US state in 2007-2009.
#' Estimates are reported separately for men and women.
#'
#' @docType data
#' @keywords datasets
#' @name life
#' @usage life
#' @format A data frame with 50 rows and 4 variables. The variables
#' are as follows:
#' \describe{
#' \item{region}{A factor with 4 levels (North Central, Northeast,
#' South, West)}
#' \item{state}{A factor with the 2-letter ISO codes for the 50 US
#' states}
#' \item{hlem}{Healthy life expectancy for men in years}
#' \item{hlef}{Healthy life expectancy for women in years}
#' }
#' @source The \code{hlem} and \code{hlef} data were obtained from
#' the Center for Disease Control and Prevention
#' \emph{Morbidity and Mortality Weekly Report} at \url{
#' http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6228a1.htm?s_cid=mm6228a1_w}.
#' The \code{region} variable was added from the
#' \code{\link[datasets]{state.region}} dataset.
NULL
# 21.3. Creating the package documentation
# code listing 21.8. Contents of the npar.R file
#' Functions for nonparametric group comparisons.
#'
#' npar provides tools for calculating and visualizing
#' nonparametric differences among groups.
#'
#' @docType package
#' @name npar-package
#' @aliases npar
NULL
#... this file must end with a blank line after the NULL...
|