1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)
# 6.1. Bar plots
library(vcd)
head(Arthritis)
dim(Arthritis)
# 6.1.1. Simple bar plots
counts <- table(Arthritis$Improved)
counts
# code listing 6.1
barplot(counts,
main = "Simple Bar Plot",
xlab = "Improvement",
ylab = "Frequency")
barplot(counts,
main = "Horizontal Bar Plot",
ylab = "Improvement",
xlab = "Frequency",
horiz = T)
# 6.1.2. Stacked and grouped bar plots
counts <- table(Arthritis$Improved, Arthritis$Treatment)
counts
# code listing 6.2
barplot(counts,
main = "Stacked Bar Plot",
xlab = "Treatment",
ylab = "Frequency",
col = c("red", "yellow", "green"),
legend=rownames(counts))
barplot(counts,
main = "Grouped Bar Plot",
xlab = "Treatment",
ylab = "Frequency",
col = c("red", "yellow", "green"),
legend=rownames(counts), beside = T)
# 6.1.3. Mean bar plots
# code listing 6.3
states <- data.frame(state.region, state.x77)
head(states)
means <- aggregate(states$Illiteracy, by=list(state.region), FUN=mean)
means
means <- means[order(means$x),]
barplot(means$x, names.arg = means$Group.1, title("Mean Illiteracy Rate"))
# 6.1.4. Tweaking bar plots
# code listing 6.4
par(mar=c(5,8,4,2))
par(las=2)
counts <- table(Arthritis$Improved)
barplot(counts,
main="Treatment Outcome",
horiz=TRUE, cex.names=0.8,
names.arg=c("No Improvement", "Some Improvement",
"Marked Improvement"))
# 6.1.5. Spinograms spine()
library(vcd)
attach(Arthritis)
counts <- table(Treatment, Improved)
spine(counts, main="Spinogram Example")
detach(Arthritis)
# 6.2. Pie charts
pie(x,labels) # pie charts
fan.plot() # fan plot, a variation of the pie chart
# code Listing 6.5. Pie charts
par(mfrow=c(2,2))
slices <- c(10, 12, 4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
pie(slices, labels = lbls,
main = "Simple Pie Chart")
pct <- round(slices/sum(slices)*100)
lbls2 <- paste(lbls, " ", pct, "%", sep = "")
pie(slices, labels = lbls2, col = rainbow(length(lbls2)),
main = "Pie Chart with Percentages")
library(plotrix)
pie3D(slices, labels=lbls, explode=0.1,
main="3D Pie Chart")
mytable <- table(state.region)
lbls3 <- paste(names(mytable), "\n", mytable, sep = "")
pie(mytable, labels = lbls3,
main = "Pie Chart from a Table\n (with sample sizes)")
# 6.3. Histograms
# code listing 6.6. Histograms
par(mfrow=c(2,2))
hist(mtcars$mpg)
hist(mtcars$mpg,
breaks = 12,
col = "red",
xlab = "Miles Per Gallon",
main = "Colored histogram with 12 bins")
hist(mtcars$mpg,
freq = F,
breaks = 12,
col = "red",
xlab = "Miles Per Gallon",
main = "Histogram, rug plot, density curve")
# rug plot
rug(jitter(mtcars$mpg)) # a one-dimensional representation of the actual data values
lines(density(mtcars$mpg), col="blue", lwd=2)
x <- mtcars$mpg
h <- hist(x,
breaks = 12,
col = "red",
xlab = "Miles Per Gallon",
main = "Histogram with normal curve and box")
xfit <- seq(min(x), max(x), length=40)
yfit <- dnorm(xfit, mean = mean(x), sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
box() # produce surrounding box
# 6.4. Kernel density plots
plot(density(x))
# if overlap with an existing graph
lines()
# code listing 6.7. Kernel density plots
par(mfrow=c(2, 2))
d <- density(mtcars$mpg)
plot(d)
d <- density(mtcars$mpg)
plot(d, main = "Kernel Density of Miles Per Gallon")
polygon(d, col = "red", border = "blue")
rug(mtcars$mpg, col = "brown")
# code listing 6.8. Comparative kernel density plots
par(lwd=2)
library(sm)
attach(mtcars)
cyl.f <- factor(cyl, levels = c(4, 6, 8),
labels = c("4 cylinder", "6 cylinder",
"8 cylinder"))
sm.density.compare(mpg, cyl, xlab="Miles Per Gallon")
title(main = "MPG Distribution by Car Cylinders")
colfill <- c(2:(1+length(levels(cyl.f))))
# locator(1), indicates that you’ll place the legend interactively
# by clicking on the graph where you want the legend to appear.
legend(locator(1), levels(cyl.f), fill = colfill)
detach(mtcars)
# 6.5. Box plots
boxplot.stats(mtcars$mpg)
## 6.5.1. Using parallel box plots to compare groups
table(mtcars$cyl)
table(mtcars$mpg)
summary(mtcars$mpg)
table(mtcars$mpg, mtcars$cyl)
table(mtcars$mpg, mtcars$cyl)
# code listing 6.9. Box plots for two crossed factors
mtcars$cyl.f <- factor(mtcars$cyl,
levels = c(4, 6, 8),
labels = c("4", "6", "8"))
mtcars$am.f <- factor(mtcars$am,
levels = c(0, 1),
labels = c("auto", "standard"))
boxplot(mpg ~ am.f * cyl.f,
data = mtcars,
varwidth=T,
col=c("gold", "darkgreen"),
main="MPG Distribution by Auto Type",
xlab = "Auto Type")
# 6.5.2. Violin plots
# A violin plot is a combination of a box plot and a kernel density plot.
vioplot(x1, x2, ..., names=, col=)
# code listing 6.10. Violin plots
library(vioplot)
x1 <- mtcars$mpg[mtcars$cyl == 4]
x2 <- mtcars$mpg[mtcars$cyl == 6]
x3 <- mtcars$mpg[mtcars$cyl == 8]
vioplot(x1, x2, x3,
names=c("4 cyl", "6 cyl", "8 cyl"),
col="gold")
title("Violin Plots of Miles Per Gallon")
# 6.6. Dot plots
# code listing 6.11.Dot plot grouped, sorted, and colored
x <- mtcars[order(mtcars$mpg),]
x$cyl <- factor(x$cyl)
x$color[x$cyl==4] <- "red"
x$color[x$cyl==6] <- "blue"
x$color[x$cyl==8] <- "darkgreen"
dotchart(x$mpg,
labels = row.names(x),
cex=.7,
groups = x$cyl,
gcolor = "black",
color = x$color,
pch=19,
main = "Gas Mileage for Car Models\ngrouped by cylinder",
xlab = "Miles Per Gallon")
|