Notebook of Reading Books: R in Action_Chapter 8.

This chapter covers

  • Fitting and interpreting linear models

  • Evaluating model assumptions

  • Selecting among competing models

8.1. The many faces of regression

8.2. OLS regression

In OLS regression, a quantitative dependent variable is predicted from a weighted sum of predictor variables, where the weights are parameters estimated from the data.

$$ \hat Y_{i} = \hat \beta_{0} + \hat \beta_{1} X_{1i}+ … + \hat \beta_{k}X_{ki}\ \ \ \ \ \ i = 1…n $$

8.2.1. Fitting regression models with lm()

tabfun

8.2.2. Simple linear regression

  • Figure 8.1. Scatter plot with regression line for weight predicted from height

  • with lm() and abline()

    listing1

8.2.3. Polynomial regression

  • Figure 8.2. Quadratic regression for weight predicted by height

    listing2

  • Figure 8.3. Scatter plot of height by weight, with linear and smoothed fits, and marginal box plots

  • with scatterplot() in the “car” package

    listingn

8.2.4. Multiple linear regression

  • Figure 8.4. Scatter plot matrix of dependent and independent variables for the states data, including linear and smoothed fits, and marginal distributions (kernel density plots and rug plots)

    listing3

8.2.5. Multiple linear regression with interactions

  • Figure 8.5. Interaction plot for hp*wt. This plot displays the relationship between mpg and hp at 3 values of wt.

    effplot

8.3. Regression diagnostics

8.3.1. A typical approach

  • Figure 8.6. Diagnostic plots for the regression of weight on height

    typapp

  • Figure 8.7. Diagnostic plots for the regression of weight on height and height-squared

    typ8311

  • Figure 8.8. Diagnostic plots for the regression of murder rate on state characteristics

    typ8312

8.3.2. An enhanced approach

  • library(car)

    tabenc

  • Normality

    • Figure 8.9. Q-Q plot for studentized residuals

    fig89

    • Figure 8.10. Distribution of studentized residuals using the residplot() function

    • with residplot()

    fig810

  • Independence of Errors

    • with durbinWatsonTest()
  • Linearity

    • Figure 8.11. Component plus residual plots for the regression of murder rate on state characteristics

    fig811

  • Homoscedasticity

    • Figure 8.12. Spread-level plot for assessing constant error variance

    fig812

8.3.3. Global validation of linear model assumption

  • gvlma() in the gvlma package.

8.3.4. Multicollinearity

  • vif()

8.4. Unusual observations

8.4.1. Outliers

  • outlierTest()

8.4.2. High leverage points

  • Figure 8.13. Index plot of hat values for assessing observations with high leverage

    fig813

8.4.3. Influential observations

  • Figure 8.14. Cook’s D plot for identifying influential observations

    fig814

  • Figure 8.15. Added-variable plots for assessing the impact of influential observations

    fig815

  • Figure 8.16. Influence plot.

    • States above +2 or below –2 on the vertical axis are considered outliers.

    • States above 0.2 or 0.3 on the horizontal axis have high leverage (unusual combinations of predictor values).

    • Circle size is proportional to influence. Observations depicted by large circles may have disproportionate influence on the parameters estimates of the model.

    fig816

8.5. Corrective measures

8.5.1. Deleting observations

8.5.2. Transforming variables

  • with powerTransform() and boxTidwell()

8.5.3. Adding or deleting variables

  • sqrt(vif) > 2

8.5.4. Trying a different approach

8.6. Selecting the “best” regression model

  • The selection of a final regression model always involves a compromise between predictive accuracy (a model that fits the data as well as possible) and parsimony (a simple and replicable model).

8.6.1. Comparing models

  • with anova() and AIC()

8.6.2. Variable selection

  • selecting a final set of predictor variables from a larger pool of candidate variables

    • Stepwise Regression

      • stepAIC() in the MASS package
    • all-subsets regression

      • regsubsets() in the leaps package

      • Figure 8.17. Best four models for each subset size based on Adjusted R-square fig817

      • Figure 8.18. Best four models for each subset size based on the Mallows Cp statistic fig818

8.7. Taking the analysis further

8.7.1. Cross-validation

  • crossval() in the bootstrap package

8.7.2. Relative importance

  • Figure 8.19. Bar plot of relative weights for the states multiple regression problem

    fig819

Attach is the Script of chapter8.

Show me the code

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# Remove most objects from the working environment
rm(list = ls())
options(stringsAsFactors = F)


# 8.2.1. Fitting regression models with lm()
myfit <- lm(formula, data)

# 8.2.2. Simple linear regression
# code listing Simple linear regression
fit <- lm(weight ~ height, data = women)
colnames(women)
summary(fit)
# Call:
#   lm(formula = weight ~ height, data = women)
# 
# Residuals:
#   Min      1Q  Median      3Q     Max 
# -1.7333 -1.1333 -0.3833  0.7417  3.1167 
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)    
# (Intercept) -87.51667    5.93694  -14.74 1.71e-09 ***
#   height        3.45000    0.09114   37.85 1.09e-14 ***
#   ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 1.525 on 13 degrees of freedom
# Multiple R-squared:  0.991, Adjusted R-squared:  0.9903 
# F-statistic:  1433 on 1 and 13 DF,  p-value: 1.091e-14


fitted(fit)
women$weight
residuals(fit)

# Figure 8.1. 
plot(women$height, women$weight,
     xlab = "Height (in inches)",
     ylab = "Weight (in pounds)")
abline(fit)

# 8.2.3. Polynomial regression
fit2 <- lm(weight ~ height + I(height^2), data=women)

# code listing 8.2. Polynomial regression
fit2 <- lm(weight ~ height + I(height^2), data = women)
summary(fit2)
# Call:
#   lm(formula = weight ~ height + I(height^2), data = women)
# 
# Residuals:
#   Min       1Q   Median       3Q      Max 
# -0.50941 -0.29611 -0.00941  0.28615  0.59706 
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)    
# (Intercept) 261.87818   25.19677  10.393 2.36e-07 ***
#   height       -7.34832    0.77769  -9.449 6.58e-07 ***
#   I(height^2)   0.08306    0.00598  13.891 9.32e-09 ***
#   ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 0.3841 on 12 degrees of freedom
# Multiple R-squared:  0.9995, Adjusted R-squared:  0.9994 
# F-statistic: 1.139e+04 on 2 and 12 DF,  p-value: < 2.2e-16

# Figure 8.2
plot(women$height, women$weight,
     xlab = "Height (in inches)",
     ylab = "Weight (in pounds)")
lines(women$height, women$weight)


# with library(car) in the "car" package
# Figure 8.3.
library(car)
scatterplot(weight ~ height,
            data=women,
            spread=FALSE, smoother=list(lty=2),
            pch=19,
            main="Women Age 30-39",
            xlab="Height (inches)",
            ylab="Weight (lbs.)")

# 8.2.4. Multiple linear regression

# code listing 8.3 Examining bivariate relationships
states <- as.data.frame(state.x77[,c("Murder", "Population",
                                     "Illiteracy", "Income", "Frost")])

cor(states)
library(car)
# Figure 8.4.
scatterplotMatrix(states, spread=F, lty.smooth=2,
                  main = "Scatter Plot Matrix")


# code listing 8.4 Multiple linear regression
states <- as.data.frame(state.x77[,c("Murder", "Population",
                                     "Illiteracy", "Income", "Frost")])

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost,
          data = states)
summary(fit)
# Call:
#   lm(formula = Murder ~ Population + Illiteracy + Income + Frost, 
#      data = states)
# 
# Residuals:
#   Min      1Q  Median      3Q     Max 
# -4.7960 -1.6495 -0.0811  1.4815  7.6210 
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)    
# (Intercept) 1.235e+00  3.866e+00   0.319   0.7510    
# Population  2.237e-04  9.052e-05   2.471   0.0173 *  
#   Illiteracy  4.143e+00  8.744e-01   4.738 2.19e-05 ***
#   Income      6.442e-05  6.837e-04   0.094   0.9253    
# Frost       5.813e-04  1.005e-02   0.058   0.9541    
# ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 2.535 on 45 degrees of freedom
# Multiple R-squared:  0.567, Adjusted R-squared:  0.5285 
# F-statistic: 14.73 on 4 and 45 DF,  p-value: 9.133e-08

#===================================================================
# 8.2.5. Multiple linear regression with interactions
# code listing 8.5 Multiple linear regression with a significant interaction term
fit <- lm(mpg ~ hp + wt + hp:wt, data=mtcars)
summary(fit)
# Call:
#   lm(formula = mpg ~ hp + wt + hp:wt, data = mtcars)
# 
# Residuals:
#   Min      1Q  Median      3Q     Max 
# -3.0632 -1.6491 -0.7362  1.4211  4.5513 
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)    
# (Intercept) 49.80842    3.60516  13.816 5.01e-14 ***
#   hp          -0.12010    0.02470  -4.863 4.04e-05 ***
#   wt          -8.21662    1.26971  -6.471 5.20e-07 ***
#   hp:wt        0.02785    0.00742   3.753 0.000811 ***
#   ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 2.153 on 28 degrees of freedom
# Multiple R-squared:  0.8848, Adjusted R-squared:  0.8724 
# F-statistic: 71.66 on 3 and 28 DF,  p-value: 2.981e-13

#====================================================================

# install.packages("effects")
library(effects)
# Figure 8.5.
plot(effect("hp:wt", fit,
            vcov. = vcov,
            list(wt=c(2.2,3.2,4.2))),
     multiline=TRUE)


# 8.3. Regression diagnostics
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
confint(fit)
# 2.5 %       97.5 %
#   (Intercept) -6.552191e+00 9.0213182149
# Population   4.136397e-05 0.0004059867
# Illiteracy   2.381799e+00 5.9038743192
# Income      -1.312611e-03 0.0014414600
# Frost       -1.966781e-02 0.0208304170


# 8.3.1. A typical approach
fit <- lm(weight ~ height, data=women)
par(mfrow=c(2,2))
# Figure 8.6.
plot(fit)

fit2 <- lm(weight ~ height + I(height^2), data=women)
par(mfrow=c(2,2))
# Figure 8.7.
plot(fit2)

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
par(mfrow=c(2,2))
# Figure 8.8.
plot(fit)

# 8.3.2. An enhanced approach

# Normality
library(car)
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
# Figure 8.9.
qqPlot(fit, labels=row.names(states), id.method="identify",
       simulate=TRUE, main="Q-Q Plot")

states["Nevada",]
#         Murder Population Illiteracy Income Frost
# Nevada   11.5        590        0.5   5149   188

fitted(fit)["Nevada"]
#   Nevada 
# 3.878958 

residuals(fit)["Nevada"]
#   Nevada 
# 7.621042 

rstudent(fit)["Nevada"]
#   Nevada 
# 3.542929 

# Normality
# code listing 8.6. Function for plotting studentized residuals
residplot <- function(fit, nbreaks=10) {
  z <- rstudent(fit)
  hist(z, breaks=nbreaks, freq=FALSE,
       xlab="Studentized Residual",
       main="Distribution of Errors")
  rug(jitter(z), col="brown")
  curve(dnorm(x, mean=mean(z), sd=sd(z)),
        add=TRUE, col="blue", lwd=2)
  lines(density(z)$x, density(z)$y,
        col="red", lwd=2, lty=2)
  legend("topright",
         legend = c( "Normal Curve", "Kernel Density Curve"),
         lty=1:2, col=c("blue","red"), cex=.7)
}
# Figure 8.10.
residplot(fit)

# Independence of Errors
durbinWatsonTest(fit)
# lag Autocorrelation D-W Statistic p-value
# 1      -0.2006929      2.317691   0.306
# Alternative hypothesis: rho != 0


# Linearity
library(car)
# Figure 8.11.
crPlots(fit)

# Homoscedasticity
# code listing  8.7. Assessing homoscedasticity
library(car)
ncvTest(fit)
# Non-constant Variance Score Test 
# Variance formula: ~ fitted.values 
# Chisquare = 1.746514, Df = 1, p = 0.18632

# Figure 8.12.
spreadLevelPlot(fit)

# Suggested power transformation:  1.209626 


# 8.3.3. Global validation of linear model assumption
# code listing 8.8. Global test of linear model assumptions
# install.packages(gvlma)
library(gvlma)
gvmodel <- gvlma(fit)
summary(gvmodel)
# Call:
#   lm(formula = Murder ~ Population + Illiteracy + Income + Frost, 
#      data = states)
# 
# Residuals:
#   Min      1Q  Median      3Q     Max 
# -4.7960 -1.6495 -0.0811  1.4815  7.6210 
# 
# Coefficients:
#   Estimate Std. Error t value Pr(>|t|)    
# (Intercept) 1.235e+00  3.866e+00   0.319   0.7510    
# Population  2.237e-04  9.052e-05   2.471   0.0173 *  
#   Illiteracy  4.143e+00  8.744e-01   4.738 2.19e-05 ***
#   Income      6.442e-05  6.837e-04   0.094   0.9253    
# Frost       5.813e-04  1.005e-02   0.058   0.9541    
# ---
#   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# 
# Residual standard error: 2.535 on 45 degrees of freedom
# Multiple R-squared:  0.567, Adjusted R-squared:  0.5285 
# F-statistic: 14.73 on 4 and 45 DF,  p-value: 9.133e-08
# 
# 
# ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
# USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
#   Level of Significance =  0.05 
# 
# Call:
#   gvlma(x = fit) 
# 
# Value p-value                Decision
# Global Stat        2.7728  0.5965 Assumptions acceptable.
# Skewness           1.5374  0.2150 Assumptions acceptable.
# Kurtosis           0.6376  0.4246 Assumptions acceptable.
# Link Function      0.1154  0.7341 Assumptions acceptable.
# Heteroscedasticity 0.4824  0.4873 Assumptions acceptable.


#============================================================

# 8.3.4. Multicollinearity
# code listing 8.9. Evaluating multicollinearity
library(car)
vif(fit)
# Population Illiteracy     Income      Frost 
#   1.245282   2.165848   1.345822   2.082547 


sqrt(vif(fit)) > 2
# Population Illiteracy     Income      Frost 
#      FALSE      FALSE      FALSE      FALSE 

#============================================================

# 8.4. Unusual observations

# 8.4.1. Outliers
library(car)
outlierTest(fit)

# 8.4.2. High leverage points

# Figure 8.13.
hat.plot <- function(fit) {
  p <- length(coefficients(fit))
  n <- length(fitted(fit))
  plot(hatvalues(fit), main="Index Plot of Hat Values")
  abline(h=c(2,3)*p/n, col="red", lty=2)
  identify(1:n, hatvalues(fit), names(hatvalues(fit)))
}
hat.plot(fit)

# 8.4.3. Influential observations

# Figure 8.14.
cutoff <- 4/(nrow(states)-length(fit$coefficients)-2)
plot(fit, which=4, cook.levels=cutoff)
abline(h=cutoff, lty=2, col="red")

# Figure 8.15. 
library(car)
avPlots(fit, ask=FALSE, onepage=TRUE, id.method="identify")

# Figure 8.16. Influence plot.
library(car)
influencePlot(fit, id.method="identify", main="Influence Plot",
              sub="Circle size is proportional to Cook's distance")


# 8.5.2. Transforming variables
# code listing 8.10. Box–Cox transformation to normality
library(car)
summary(powerTransform(states$Murder))
# bcPower Transformation to Normality 
# Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
# states$Murder    0.6055           1       0.0884       1.1227
# 
# Likelihood ratio test that transformation parameter is equal to 0
# (log transformation)
# LRT df     pval
# LR test, lambda = (0) 5.665991  1 0.017297
# 
# Likelihood ratio test that no transformation is needed
# LRT df    pval
# LR test, lambda = (1) 2.122763  1 0.14512


boxTidwell(Murder~Population+Illiteracy,data=states)
#             MLE of lambda Score Statistic (z) Pr(>|z|)
# Population       0.86939             -0.3228   0.7468
# Illiteracy       1.35812              0.6194   0.5357
# 
# iterations =  19 

# 8.6.1. Comparing models
# code listing 8.11. Comparing nested models using the anova() function
fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
           data=states)
fit2 <- lm(Murder ~ Population + Illiteracy, data=states)

anova(fit1,fit2)
# Analysis of Variance Table
# 
# Model 1: Murder ~ Population + Illiteracy + Income + Frost
# Model 2: Murder ~ Population + Illiteracy
# Res.Df    RSS Df Sum of Sq      F Pr(>F)
# 1     45 289.17                           
# 2     47 289.25 -2 -0.078505 0.0061 0.9939

# code listing 8.12. Comparing models with the AIC
fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
           data=states)
fit2 <- lm(Murder ~ Population + Illiteracy, data=states)

AIC(fit1, fit2)
#       df      AIC
# fit1  6 241.6429
# fit2  4 237.6565


# 8.6.2. Variable selection
# code listing 8.13. Backward stepwise selection
library(MASS)
fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
           data=states)
stepAIC(fit, direction = "backward")
# Start:  AIC=97.75
# Murder ~ Population + Illiteracy + Income + Frost
# 
# Df Sum of Sq    RSS     AIC
# - Frost       1     0.021 289.19  95.753
# - Income      1     0.057 289.22  95.759
# <none>                    289.17  97.749
# - Population  1    39.238 328.41 102.111
# - Illiteracy  1   144.264 433.43 115.986
# 
# Step:  AIC=95.75
# Murder ~ Population + Illiteracy + Income
# 
# Df Sum of Sq    RSS     AIC
# - Income      1     0.057 289.25  93.763
# <none>                    289.19  95.753
# - Population  1    43.658 332.85 100.783
# - Illiteracy  1   236.196 525.38 123.605
# 
# Step:  AIC=93.76
# Murder ~ Population + Illiteracy
# 
# Df Sum of Sq    RSS     AIC
# <none>                    289.25  93.763
# - Population  1    48.517 337.76  99.516
# - Illiteracy  1   299.646 588.89 127.311
# 
# Call:
#   lm(formula = Murder ~ Population + Illiteracy, data = states)
# 
# Coefficients:
#   (Intercept)   Population   Illiteracy  
# 1.6515497    0.0002242    4.0807366  


# code listing 8.14. All subsets regression
# install.packages("leaps")
library(leaps)
leaps <-regsubsets(Murder ~ Population + Illiteracy + Income +
                     Frost, data=states, nbest=4)
plot(leaps, scale="adjr2") # Figure 8.17

library(car)
subsets(leaps, statistic="cp",
        main="Cp Plot for All Subsets Regression")
abline(1,1,lty=2,col="red")


# 8.7.1. Cross-validation
# code listing 8.15. Function for k-fold cross-validated R-square
shrinkage <- function(fit, k=10){
  require(bootstrap)
  
  theta.fit <- function(x,y){lsfit(x,y)}
  theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}
  
  x <- fit$model[,2:ncol(fit$model)]
  y <- fit$model[,1]
  
  results <- crossval(x, y, theta.fit, theta.predict, ngroup=k)
  r2 <- cor(y, fit$fitted.values)^2
  r2cv <- cor(y, results$cv.fit)^2
  cat("Original R-square =", r2, "\n")
  cat(k, "Fold Cross-Validated R-square =", r2cv, "\n")
  cat("Change =", r2-r2cv, "\n")
}

fit <- lm(Murder ~ Population + Income + Illiteracy + Frost, data=states)
shrinkage(fit)
# Original R-square = 0.5669502
# 10 Fold Cross-Validated R-square = 0.4240783
# Change = 0.1428719


fit2 <- lm(Murder ~ Population + Illiteracy, data=states)
shrinkage(fit2)
# Original R-square = 0.5668327
# 10 Fold Cross-Validated R-square = 0.5332059
# Change = 0.03362679


# 8.7.2. Relative importance
zstates <- as.data.frame(scale(states))
zfit <- lm(Murder~Population + Income + Illiteracy + Frost, data=zstates)
coef(zfit)
#   (Intercept)    Population        Income    Illiteracy         Frost
# -2.054026e-16  2.705095e-01  1.072372e-02  6.840496e-01  8.185407e-03


# code listing 8.16. relweights() function 
# for calculating relative importance of predictors
relweights <- function(fit,...){
  R <- cor(fit$model)
  nvar <- ncol(R)
  rxx <- R[2:nvar, 2:nvar]
  rxy <- R[2:nvar, 1]
  svd <- eigen(rxx)
  evec <- svd$vectors
  ev <- svd$values
  delta <- diag(sqrt(ev))
  lambda <- evec %*% delta %*% t(evec)
  lambdasq <- lambda ^ 2
  beta <- solve(lambda) %*% rxy
  rsquare <- colSums(beta ^ 2)
  rawwgt <- lambdasq %*% beta ^ 2
  import <- (rawwgt / rsquare) * 100
  lbls <- names(fit$model[2:nvar])
  rownames(import) <- lbls
  colnames(import) <- "Weights"
  barplot(t(import),names.arg=lbls,
          ylab="% of R-Square",
          xlab="Predictor Variables",
          main="Relative Importance of Predictor Variables",
          sub=paste("R-Square=", round(rsquare, digits=3)),
          ...)
  return(import)
}


relweights2 <- function(fit,...){
  R <- cor(fit$model)
  nvar <- ncol(R)
  rxx <- R[2:nvar, 2:nvar]
  rxy <- R[2:nvar, 1]
  svd <- eigen(rxx)
  evec <- svd$vectors
  ev <- svd$values
  delta <- diag(sqrt(ev))
  lambda <- evec %*% delta %*% t(evec)
  lambdasq <- lambda ^ 2
  beta <- solve(lambda) %*% rxy
  rsquare <- colSums(beta ^ 2)
  rawwgt <- lambdasq %*% beta ^ 2
  import <- (rawwgt / rsquare) * 100
  lbls <- names(fit$model[2:nvar])
  rownames(import) <- lbls
  colnames(import) <- "Weights"
  dotplot(t(import),names.arg=lbls,
          ylab="% of R-Square",
          xlab="Predictor Variables",
          main="Relative Importance of Predictor Variables",
          sub=paste("R-Square=", round(rsquare, digits=3)),
          ...)
  return(import)
}
# code listing 8.17. Applying the relweights() function
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
relweights(fit, col="lightgrey")
#             Weights
# Population 14.723401
# Illiteracy 59.000195
# Income      5.488962
# Frost      20.787442